Q	P. Code: 16EC402	R16	
R	eg. No:		
	SIDDHADTH INSTITUTE OF ENGINEEDING & ΤΕCΗΝΟΙ ΟΩν., ΡΙ	TTUD	
	(AUTONOMOUS)	IIUK	
	B.Tech II Year I Semester Supplementary Examinations December-20	21	
	(Electronics and Communication Engineering)		
Т	ime: 3 hours	lax. Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	a Convert the following to Decimal and then to Octal. (i) 423416 (ii) 100100112.	L1	6M
	 b Convert the following to Decimal and then to Hexadecimal. (i) 12348 (ii) 110011112 	L1	6M
	OR		
2	 a Simplify the following Boolean expressions to minimum no. of literals. i. ABC+A'B+ABC' ii. (BC'+A'D)(AB'+CD') 	L3	6M
	iii. x'yz+xz iv. xy+x(wz+wz')		
	 b Obtain the Dual of the following Boolean expressions. i) AB+A(B+C)+B'(B+D) ii) A+B+A'B'C iii) A'B+A'BC'+A'BCD+A'BC'D'E iv) ABEF+ABE'F'+A'B'EF 	L3	6M
	UNIT-II		
3	Minimize the given Boolean function $F(A,B,C,D) = \Sigma m(0,1,2,3,6,7,13,15)$ using tabulation method and implement using basic gates	L2	12M
4	Simplify the Boolean function by using tabulation method $F(a \ b \ c \ d) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$	L3	12M
5	a Design & implement a 4-bit Binary-To-Gray code converter	L3	6M
	b Design a 4 bit binary-to-BCD code converter	L3	6M
	OR		
6	a Implement the following Boolean function using 8:1 multiplexer. F(A,B,C,D) = A'BD'+ACD+B'CD+A'C'D.	L3	6M
	b What is multiplexer? Construct 4*1 multiplexer with logic gates and truth table.	L3	6M
7	 a Draw the circuit of JK flip flop using NAND gates and explain its operation b Design a 2-input 2-output detector which produces an output 1 every time the sequence 0101 is detected. Implement the sequence detector using JK flip-flops. OR 	L3 L1	6M 6M
8	 A sequential circuit with two D-flip flops A and B, two inputs 'x' and 'y' and one output 'z' is specified by the following next state and output equation. i) Draw the logic diagram of the circuit. ii) List the state table and draw the corresponding state diagram 	L3	12M

Q.P. Code: 16EC402

UNIT-V

9 Implement PLA circuit for the following functions F1(A,B,C)= Σ m(3,5,6,7), F2(A,B,C)= Σ m(0,2,4,7). L3 12M

OR

10 a Differentiate among ROM, PROM ,DROM ,EPROM, EEPROM, RAM.L36Mb Explain about memory decoding.L36M

*** END ***